Chemically Roughened Solid Silver: A Simple, Robust and Broadband SERS Substrate
نویسندگان
چکیده
Surface-enhanced Raman spectroscopy (SERS) substrates manufactured using complex nano-patterning techniques have become the norm. However, their cost of manufacture makes them unaffordable to incorporate into most biosensors. The technique shown in this paper is low-cost, reliable and highly sensitive. Chemical etching of solid Ag metal was used to produce simple, yet robust SERS substrates with broadband characteristics. Etching with ammonium hydroxide (NH₄OH) and nitric acid (HNO₃) helped obtain roughened Ag SERS substrates. Scanning electron microscopy (SEM) and interferometry were used to visualize and quantify surface roughness. Flattened Ag wires had inherent, but non-uniform roughness having peaks and valleys in the microscale. NH₄OH treatment removed dirt and smoothened the surface, while HNO₃ treatment produced a flake-like morphology with visibly more surface roughness features on Ag metal. SERS efficacy was tested using 4-methylbenzenethiol (MBT). The best SERS enhancement for 1 mM MBT was observed for Ag metal etched for 30 s in NH₄OH followed by 10 s in HNO₃. Further, MBT could be quantified with detection limits of 1 pM and 100 µM, respectively, using 514 nm and 1064 nm Raman spectrometers. Thus, a rapid and less energy intensive method for producing solid Ag SERS substrate and its efficacy in analyte sensing was demonstrated.
منابع مشابه
SERS: Materials, applications, and the future
The first observations of the Raman spectra of pyridine on roughened silver were made in 19741; however, at this time the authors did not recognize that these spectra were due to any unusual, enhanced, or new phenomena. Since its discovery in 19772, interest in and the use of surface enhanced Raman spectroscopy (SERS) has grown exponentially (Fig. 1). The SERS field has dramatically progressed ...
متن کاملNanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering
A simple and fast method to fabricate nanostructured substrates with silver nanoparticles over a large area for surface-enhanced Raman scattering (SERS) is reported. The method involves two steps: 1) dip the substrate into a silver nitrate solution for a few minutes, remove the substrate from the solution, and then air dry and 2) process the silver nitrate coated substrate by femtosecond (fs) l...
متن کاملSingle molecule detection from a large-scale SERS-active Au79Ag21 substrate
Detecting and identifying single molecules are the ultimate goal of analytic sensitivity. Single molecule detection by surface-enhanced Raman scattering (SM-SERS) depends predominantly on SERS-active metal substrates that are usually colloidal silver fractal clusters. However, the high chemical reactivity of silver and the low reproducibility of its complicated synthesis with fractal clusters h...
متن کامل2p or not 2p: tuppence-based SERS for the detection of illicit materials.
Deposition of silver onto British 2p coins has been demonstrated as an efficient and cost effective approach to producing substrates capable of promoting surface enhanced Raman scattering (SERS). Silver application to the copper coins is undemanding taking just 20 s, and results in the formation of multiple hierarchial dendritic structures. To demonstrate that the silver deposition sites were c...
متن کاملSurface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience
This article describes recent developments in the field of surface-enhanced Raman scattering (SERS) research. It begins with the early history of SERS as the first SERS spectrum was obtained from an electrochemical system of pyridine molecule adsorbed on roughened silver electrode, which led to the discovery of the SERS effect in the mid-1970s. The article also illustrates the various aspects o...
متن کامل